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SUMMARY 

The formulation of a control-volume-based finite element method (CVFEM) for axisymmetric, two- 
dimensional, incompressible fluid flow and heat transfer in irregular-shaped domains is presented. The 
calculation domain is discretized into torus-shaped elements and control volumes. In a longitudinal 
cross-sectional plane. these elements are three-node triangles. and the control volumes are polygons 
obtained by joining the centroids of the three-node triangles to the mid-points of the sides. Two different 
interpolation schemes are proposed for the scalar-dependent variables in  the advection terms: a flow- 
oriented upwind function, and a mass-weighted upwind function that guarantees that the discretized 
advection terms contribute positively to the coefficients in the discretized equations. In the discretization of 
diffusion transport terms, the dependent variables are interpolated linearly. An iterative sequential variable 
adjustment algorithm is used to solve the discretized equations for the velocity components, pressure and 
other scalar-dependent variables of interest. The capabilities of the proposed CVFEM are demonstrated by 
its application to four different example problems. The numerical solutions are compared with the results of 
independent numerical and experimental investigations. These comparisons are quite encouraging. 

K E Y  WORDS Axisymmetric flow Laminar flow Control-volume finite element method Mass-weighted skew upwind 
interpolation Flow-oriented upwind interpolation 

1.  INTRODUCTION 

The main contribution of this paper is the formulation of a control-volume-based finite element 
method for two-dimensional axisymmetric, incompressible, viscous fluid flows. The proposed 
method is based on a primitive-variables, co-located, equal-order formulation: it works directly 
with the velocity components and pressure, these dependent variables are stored at the same 
nodes in the finite element mesh, and they are interpolated over the same elements. 

The formulation of Control-Volume-based Finite Element Methods (CVFEMs) for fluid flow 
typically involves five basic steps: (i) discretization of the calculation domain into elements; 
(ii) further discretization of the calculation domain into control volumes that surround the nodes 
in the finite element mesh; (iii) prescription of element-based interpolation functions for the 
dependent variables and the thermophysical properties of the fluid; (iv) use of the subdomain, or 
control-volume-based, method of weighted residuals' and an element-by-element procedure to 
derive and assemble algebraic approximations to the governing equations; (v) prescription of 
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a procedure to solve these algebraic equations. Thus, CVFEMs combine concepts native to Finite 
Volume Methods (FVMs) and Finite Element Methods (FEMs). Indeed, following the views of 
Finlayson and Scriven’ and Zienkiewicz,’ FVMs, FEMs and CVFEMs can all be regarded as 
particular cases of the Method of Weighted Residuals (MWR). 

In the mid-1970s. the desire and the need to extend the capabilities of the successful Marker 
And Cell (MAC) method of Harlow and Welch,3 and the FVMs of Patankar and S ~ a l d i n g , ~  and 
Raithby’ to irregular geometries provided the motivation for the CVFEMs of Baliga,6 Rama- 
dhyani7 and Prakash.8 These early CVFEMs were formulated by combining and extending 
concepts borrowed from the aforementioned FVMs, the work of Winslow,’ and the FEMs of 
Zienkiewicz,’ Oden,’@ and Taylor and Hood.’’ Today, many papers dealing with the formula- 
tion and application of CVFEMs for conduction, convection4ffusion and fluid flow problems 
are available in published literature. Examples include the works of Baliga and Patankar,”- l 4  

Prakash and Patankar,’’ LeDain-Muir and Baliga,I6 Prakash,” Hookey and Baliga,” 
Schneider and Raw,”.” Costa and Oliviera’l and Elkaim et a/.” The combination of finite 
element and finite volume approaches can also be found in the works of Choudhury 
and Nicolaide~,’~ van Leer,24 Jameson and Ma~ripl is , ’~ Lahrmann26 and Swaminathan and 
Voller.’’ 

Recent reviews of CVFEMs for two- and three-dimensional viscous fluid flows are available in 
the works of Hookey,” S a a b a ~ ’ ~  and Baliga and Saabas.” Most of the CVFEMs proposed in 
the 1970s and 1980s have intrinsic difficulties that restrict the scope of their applicability to 
practical problems. CVFEMs based on flow-oriented upwind schemes’” 16- l 7  are successful in 
reducing the false diffusion that afflicts locally one-dimensional upwind schemes used in FVMS,~’  
but they can encounter difficulties caused by negative coefficients in the discretization equations. 
These difficulties can become quite serious when obtuse-angled triangular elements, or tetrahed- 
ral elements with a solid angle exceeding n/2 steradians, are used in problems that involve high 
Peclet numbers:29* 30 furthermore, for these conditions, additional difficulties related to indetermi- 
nate coefficients in the interpolation functions may be enco~ntered.~’ Some of the two-dimen- 
sional CVFEMs based on unequal-order and equal-order co-located formulations are successful 
in avoiding checkerboard-type pressure distributions in incompressible flow problems, but they 
suffer from other difficulties: the unequal-order formulation of Baliga and Patankar’ can suffer 
a loss of accuracy in problems with high Reynolds numbers, and its extension to three dimensions 
would be quite cumbersome; the co-located equal-order formulations of Prakash l 7  and Hookey 
and Baliga’* require overspecification of boundary conditions and encounter convergence 
difficulties in problems with inflow and outflow boundarie~.’~ Schneider and have 
proposed a co-located equal-order CVFEM based on a mass-weighted upwind scheme. This 
method ensures that the discretized convective transport terms contribute positively to the 
coefficients in the discretization equations, and it avoids spurious oscillations in the computed 
pressure field. However, this CVFEM ”*’’ is based on planar quadrilateral elements, and its 
behaviour in problems with inflow and outflow boundaries has not been discussed in detail in the 
published literature. 

The recently completed work of S a a b a ~ ’ ~  was aimed at overcoming some of the difficulties 
mentioned earlier. It has resulted in an equal-order co-located CVFEM that deals directly with 
primitive variables and is capable of solving steady, multidimensional, laminar and turbulent, 
incompressible, viscous fluid flow problems in irregular-shaped geometries, with or without 
inflow and outflow b~undaries . ’~.~’  During the work of S a a b a ~ , ’ ~  it appeared as if there was no 
published description of a primitive-variables-based CVFEM for the solution of two-dimensional 
axisymmetric fluid flow problems. The work described in this paper was undertaken to develop 
such a CVFEM, by adapting and extending ideas contained in earlier methods.”. 15*19929 In this 
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context, it should be noted that a recently published paper by Elkaim et ~ 1 . ~ ~  does discuss 
a CVFEM for two-dimensional axisymmetric flows, but it is based on a stream function-vorticity 
formulation. Furthermore, Elkaim er ~ 1 . ~ ’  present a mathematical model and results for two- 
dimensional axisymmetric flow problems, but their numerical solution procedure is described in 
the context of a two-dimensional planar (Cartesian) formulation akin to the CVFEM of Baliga 
and Patankar.” 

The formulation of the proposed two-dimensional axisymmetric CVFEM is presented in 
Section 3. Following that, the capabilities of this CVFEM are demonstrated by its application to 
four different example problems. 

2. GOVERNING EQUATIONS 

With respect to the cylindrical co-ordinate system (r ,  0, z), steady, axisymmetric, elliptic flows of 
Newtonian fluids are governed by the following differential equations: 

z-momentum equation 

a l a  JP a - (puu)+-- (rpou)= --+- p- +-- r p -  + S , ,  aZ r dr d z  az(  ::) : i r (  S:) 
r-momentum equation 

a l a  dP a U - (puu)+-- (rpvu)= --+- p- +-- r p -  - p - + S , ,  
d2 r dr dr  az (  ::) : f r (  ::) r2 

continuity equation 

other conservation equations (general f o r m )  

In  these equations, p is the mass density of the fluid, p is the pressure, p is the dynamic viscosity 
of the fluid, u and yare the velocity components in the z- and r-directions, respectively, and S, and 
S, are the corresponding volumetric source terms. In equation (4), 4 can be used to represent any 
scalar-dependent variable, such as temperature, mass concentration, kinetic energy of turbulence 
and its dissipation rate; r, is the corresponding diffusion coefficient; and S ,  is the appropriate 
volumetric source term. 

The momentum and the continuity equations, equations (1H3), can be obtained from equation 
(4) by defining the dependent variable, 4, the diffusion coefficient, r,, and source term, S,, 
according to Table I. 

3. PROPOSED METHOD 

This method was constructed by adapting and extending ideas from CVFEMs proposed by 
Baliga and Patankar,”-14 Prakash and Patankar,” Schneider and and S a a b a ~ . ~ ~  
Concise descriptions of the various steps involved in the formulation of the proposed CVFEM 
are presented in this section. 
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Table 1. Specific forms of the general equation 

2-momentum fc u Sz-(?p/?2)  
r-momentum fc L' S,-(?p/?r)-pv/r* 
Continuity 0 1  0 

3. I .  Domain discretization 

I t  is convenient to present the domain discretization procedure with respect to a longitudinal 
cross-section of the axisymmetric domain of interest. This cross-section is first divided into 
three-node triangular elements. Then the centroids of the elements are joined to the midpoints of 
the corresponding sides. This creates polygonal control volumes around each node in the finite 
element mesh. The longitudinal cross-section of a sample domain discretization is shown in 
Figure 1; the solid lines denote the domain and element boundaries, the dashed lines represent the 
control-volume faces and the shaded areas show the control volumes associated with one internal 
node and one boundary node. 

The discretization of the longitudinal cross-section is rotated through 21c radians about the axis 
of symmetry. The result is a discretization of the axisymmetric calculation domain into torus 
elements of triangular cross-section, and torus control volumes of polygonal cross-section. In  
the rest of the paper, for conciseness in the presentation, the torus elements and torus control 
volumes will be referred to as triangular (three-node) elements and polygonal control volumes, 
respectively. 

3.2. Integrul conservation equation 

Consider a typical node i in the calculation domain: it could be an internal node, such as the 
one shown in Figure 2(a), or a boundary node, similar to the one shown in Figure 2(b). An integral 
formulation corresponding to equation (4) can be obtained by applying the appropriate conserva- 
tion principle for the dependent variable, 4, to a suitably chosen control volume. The resulting 
integral conservation equation, when applied to the control volume surrounding node i in 
Figure 2, can be written as follows: 

[ j: J .n2nrds+ Jen2nrds- Lao. s+dvl 1 
+ [similar contributions from other elements associated with node i ]  

+ [boundary contributions, if applicable] = 0, ( 5 )  

where n is a unit outward vector normal to the differential length element, ds, and J is the 
combined convection4iffusion flux of 4: 

Jc  = p V 4 .  (8) 

The form of equation ( 5 )  emphasizes that it can be assembled by using an element-by-element 
procedure. 
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Figure I .  Discretization of the longitudinal cross-section of a calculation domain 

Figure 2. Cross-sections or typical control volumes associated with (a) an internal node (b) a boundary node 

3.3. Interpolation ,functions 

The derivation of algebraic approximations to the integral conservation equations requires the 
specification of element-based interpolation functions for the dependent variable, 4, diffusion 
coefficient, r,, source terms, S,, and mass density, p .  

The interpolation functions are specific to each element. For convenience, in the formulation of 
these functions, in each element, a local (x, y )  co-ordinate system is defined such that the origin is 
at the centroid of the triangular element, the x-axis is in the direction of z ,  and the y-axis is in the 
direction of r. The interpolation functions will be expressed with respect to this local co-ordinate 
system. 

Diffusion coejzcient,  density and sources. In each triangular element, the centroidal value of r, 
and p are assumed to prevail over the corresponding element. 
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The source term, S&, is linearized, if required, and expressed in the following general form?' 

s, = sc + s p  4. (9) 

In  each element, the values of Sc and S ,  are computed at the nodes and assumed to prevail over 
the portions of the corresponding control volumes that lie within the element. 

Mass,f lnw rates. In the calculation of mass flow rates across the control volume faces, the 
velocity is interpolated in a special way in each element, and this mass-flow related velocity is 
denoted by 

V"= u"i + u"j. (10) 
This special treatment, borrowed from the work of Prakash and Patankar," prevents the 
occurrence of spurious pressure oscillations in the proposed co-located equal-order CVFEM. The 
development of this interpolation is based on the discretized momentum conservation equations. 
Therefore, it will be presented later in this paper. 

4 in diflusion terms. In the derivation of algebraic approximations to surface integrals of 
diffusion fluxes, equations (5) and (7), the dependent variable 4 is interpolated linearly in each 
element: 

= A X +  By+ C. ( 1  1 )  

Referring to Figure 3(a), the constants A, B and C can be uniquely determined in terms of the x,y 
co-ordinates of the three nodes, and the corresponding values of 4. Thus, with reference to the 
element 123 and the local x,y co-ordinate system shown in Figure 3(a), 

A = [ ( Y 2 - Y 3 ) & 1  +(Y, -Yi  142 +(yi -y2)43]/DET, (12) 

B = C(x3 -x2 )41 + ( X I  -x3)42 + ( ~ 2  - X I  )43l/DET, (1 3) 

c=[(x2y3-x3y2)41 + ( X J Y ~  - X t Y 3 ) 4 2  +(xty2-~2~11)43l/DET, (14) 

(15) 
An equivalent, and perhaps more elegant, development of this linear interpolation on triangular 
elements could be done using barycentric or area co-ordinates, traditionally employed in FEMs.~  
I t  should also be noted that with such linear interpolation functions, Delauney triangulation is 

where 
DET=(xty2 +x2Y3 + X J Y l  - Y  1x2 -Y2x3 -y,x1). 

3 3 3 

- 
Vav 

2 2 

1 1 1 

Figure 3. Cross-section ofa  typical triangular element. and notation used in the formulation 
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required to ensure that algebraic approximations of the diffusion transport terms contribute 
positively to the coefficients in the discretized equations. BarthJ2 has presented a formal proof of 
this statement for two-dimensional planar problems. 

4 in convection terms. In the derivation of algebraic approximations to surface integrals of the 
convective fluxes, equations (5) and (8), two different interpolation schemes for q5 were investig- 
ated: a Flow-Oriented upwind scheme (FLO) and a Mass-Weighted upwind scheme (MAW). 

The FLO scheme is based on the earlier work of Baliga and Patankar.l2.l4 The interpolation 
function used in this scheme responds appropriately to an element-based Peclet number and to 
the direction of the element-average velocity vector. This interpolation function for q5 is defined 
using a local flow-oriented co-ordinate system ( X ,  Y )  as shown in Figure 3(a): the origin of this 
co-ordinate system is located at the centroid of the element, and the X-axis is oriented along the 
element-average velocity, Vrv: 

where 
4= A t  + BY+C, (16) 

U T V  = I vrv I .  (20) 

The constants A,  B and C in equation (16) can be determined from equations (12H15) with the 
following modifications: replace xl, x2 and x3 by tl, t2 and t3, respectively, and replace y , ,  y, 
and y 3  by Y , ,  Y2  and Y 3 ,  respectively. It should be noted that with reference to the typical 
element shown in Figure 3(a), the element-average value of velocity in equation (20), Vrv, is given 

(21) 

by 

Vr. = urv i + urv j, 

where i and j are unit vectors in the z- and r-directions, respectively, and 

with uy and uy  computed using equation (48). In planar two-dimensional problems that involve 
acute-angled triangular elements and relatively low element-based Peclet numbers, the FLO 
scheme has proved quite s u c c e s s f ~ l . ' ~ ~ ~ ~  If high values of the element Peclet number are 
encountered, however, the FLO scheme can lead to negative coefficients in the algebraic 
discretized equations,'2s29 and this difficulty is compounded when obtuse-angled triangular 
elements are used. These negative coefficients imply that an increase in the value of the 
transported scalar at a node outside the corresponding control volume can lead to an increase in 
the net outflow of the scalar from that control volume. This is physically incorrect. In steady-state 
problems, in the absence of source terms, for a scalar to be transported out of a control volume, it 
first has to flow into the control volume.33 The donor-cell scheme of P r a k a ~ h ~ ~  is one way of 
ensuring positive coefficients: in this approach, the value of a scalar convected out of a control 
volume, across its surface, is set equal to the value of the scalar at the node within the control 
volume. This approach guarantees positive coefficients, but takes little account of the influence of 
the direction of the flow. Thus, it is prone to considerable false diffusion.34 
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The proposed MAW scheme is an adaptation of the positive-coefficient schemes of Schneider 
and Raw" and S a a b a ~ . ~ ~  I t  ensures, at the element level, that the extent to which the dependent 
variable at a node exterior to a control volume contributes to the convective outflow is less than 
or equal to its contribution to the inflow by convection. Thus, it is a sufficient condition to ensure 
that the algebraic approximations to the convective terms in equation ( 5 )  add positively to the 
discretized equation. Furthermore, the MAW scheme takes better account of the influence of the 
direction of the flow than the donor-cell scheme of P r a k a ~ h . ~ ~  Thus, the MAW scheme produces 
less false diffusion than the donor-cell scheme. 

The MAW scheme defines a mass-weighted average of 4 at each of the three control surfaces of 
a triangular element (Figure 3(b)), namely, q4r, & q5,, in the following manner. 

Let 

m, = pV" - n, 2nr ds, m, = pV" n, 2nr ds, m, = pV" - n, 2nr ds, (23) s: . s: s: 

i 

where n,,n, and n, are unit  normals, defined in Figure 3(b): 

fP$, +( I - fp)d1,  where .fp= min [max( -kl/mr, 01, I ]  if rhr >O, 
(24) 

, s + ( l  -.fp)42, where ,fp=min[max(-m,/ritr,O), 11 if m , < O ,  

fpq5,+(l -fp)43, where .fp=min[max(m,/ms,O), 13 if m,>O, 4 s  = ( 2 5 )  f,+,+(l -fp)&. where ,f,=min[max(-riq/+,O), 13 if m , < O ,  

f P $ , + ( l  -.fp)bl, where fp=min[max(-vitr/m,,O),l] if riz,>O, 
(26) 4, = i . fp&+(l  -,fp)&, where ,fp=min[max(rit,/~,.O), I ]  if m, <O, 

These mass-weighted averages of 4 are assumed to prevail over each control surface when the 
surface integrals of the convection terms, equations (5) and (S), are evaluated. The algebraic 
approximations of the mass flow rates in equation (23) will be discussed later. 

In problems with acute-angled triangular elements and relatively low-element Peclet numbers, 
the FLO scheme is more accurate than the MAW scheme. As was mentioned earlier, however, 
when high element-based Peclet numbers are involved, especially in conjuction with obtuse- 
angled elements, the FLO scheme produces negative coefficients in the discretized equations. 
Negative coefficients in the discretized equations can lead to the following difficulties: (i) the 
numerical solutions could exhibit spurious oscillations about the exact solution; (ii) iterative 
solution algorithms could diverge; (iii) in problems involving always-positive dependent vari- 
ables, such as concentration of a chemical species or phase, or the kinetic energy of turbulence, 
physically meaningless solutions or divergence could result. When such difficulties are encoun- 
tered, the MAW scheme is recommended. Indeed, a formulation that automatically switches from 
the FLO scheme to the MAW scheme, when necessary, could be conceived, but this is not within 
the scope of this paper. 

The MAW scheme defined by equations (23H26) is highly implicit. This does not pose any 
special difficulties in the proposed derivation of the discretization equations, as presented in the 
next section, because it is based on successive substitution, or Picard, linearization of the 
convective transport terms in the momentum equations. However, the MAW scheme would 
make Newton-type linearizations very difficult. I t  should also be noted that in this scheme, to 
obtain expressions for 4r,4s and 4, in terms of and &, a 3 x 3 matrix of element- 
interpolation coefficients must be inverted. Further details are available in the work of S a a b a ~ . ~ ~  

Pressure p. Pressure is interpolated linearly in each element. With respect to the local x-y 
co-ordinate system shown in Figure 3(a), 

(27) p = d x  + e y  +.f. 
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The constants d,e andj'can be obtained using procedures similar to those used to determine the 
constants A,  B and C in equations (12H14). 

3.4 .  Di.wreti:a!ion ryua!ions 

The discretization equations are obtained by first deriving algebraic approximations to the 
element contributions and the boundary contributions, if applicable, and then assembling these 
contributions appropriately. 

Discretization equation for 4. 
The following discussion pertains to node 1 of the element shown in Figure 3. The element 

contribution consists of the diffusion, convection and source contributions. The derivation of 
algebraic approximations to each of these contributions is presented separately. 

components in the z-  and r-directions: 
DifJsion contribution. In each element, the diffusion flux J D  can be expressed in terms of its 

where i and j are unit vectors in the z- and r-directions, respectively. The interpolation function 
given in equation ( I  I )  is used to approximate JD, and JD,. Thus, with reference to element 123 and 
the local co-ordinate system in Figure 3(a), the diffusion contribution is approximated as follows: 

where A and B are given by equations ( 1  2) and (1 3), respectively. 

Conuection contribution. In each element, the convection flux Jc can be expressed in terms of its 
components in the z- and r-directions: 

Jc = Jc-i + Jc,j = pu"'4i + pu"+j, (31) 

where 4 is given by equation (1 6) when the FLO scheme is used, or equations (24H26) when using 
the M A W  scheme. I t  should be noted here again that u"' and u"' denote components of the velocity 
vector, V"', in the mass-flux terms. 

In the case of the FLO scheme, the interpolation function given in equation (16) is used to 
approximate 4, equation (48) is used to obtain urn and urn, and the convection contribution is 
evaluated using Simpson's rule as follows: 
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When the MAW scheme is used, the convection contribution is simply expressed as 

Jc n2nr ds = m, 4,, (34) 

I t  should be noted that mr and mt are mass flow rates across the corresponding control surfaces, in 
the directions of the normals n, and n,, respectively (see Figure 3(b)). as expressed in equation (23). 

Source term. The volume integral involving the source term S ,  is approximated as follows: 

1 Jc - n2nr ds = m, 4r c 

where Scl,  Spl are the values of Sc and Sp associated with node 1 in the element of interest, and 

where DET is given by equation ( 1  5).  
Adding up the diffusion, convection and source contributions, the total contribution of element 

123 to the conservation equation for node 1 is obtained. The algebraic approximation to this total 
element contribution can be compactly expressed as follows: 1: J sn2nr ds + J sn2nr ds- 1 j 1 aoc 

S ,  d Y =  Cf 41 + C: 42 + C$ + 3  + D,. (37) 

Expressions similar to equation (37) can be derived for the contributions of all elements 
associated with the internal node i shown in Figure 2(a). Such expressions, when substituted into 
equation (5 ) ,  yield the complete discretization equation for node i. A general representation of this 
equation can be cast in the following form: 

Discretization equations for u and v.  
Except for the presence of the integrals of the pressure gradient, the integral momentum 

conservation equations are identical in form to the integral conservation equation for 4. 
Therefore, only the treatment of the pressure gradient term is discussed explicitly in this section. 
Using the specializations given in Table I ,  the volume integral of the source and pressure gradient 
terms in the z-momentum equation are approximated as 

S,d*y=(S,,), ~laoc+(SPz)l  U I  Y l a o c -  (i;) - v 1 4 0 c .  (39) 

S ,  d y  = (scr)l Y laoc + ( s p r )  1 01 Y laoc - (g ) 

j I aoc element  

The volume integral of the source and pressure gradient terms in the r-momentum equation are 
approximated as 

Y laoc. (40) 
l l a o c  element  

The pressure gradients in these expressions are computed using equation (27): 

(g) = d ,  ($) =e. 
element e lement  

Discretizations of the momentum equations are derived and assembled using element-by- 
element procedures akin to those used to obtain the discretization equation for 4. The resulting 
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u and LI discretization equations for a node i can be cast in the following general forms: 

acgvi =C ac:b vnb + h”+ “Ycv (-:) 
n b  cv 

(43) 

- - 
The terms ( - ~ ? p / d z ) ~ ~  and (- dp/dr)cv are volume-averaged pressure gradients associated with 
the control volume, Yc-. 
Interpolation of mass Juxes and discretization equation for p. 

Denoting the velocity in the mass-flux terms by V”, the integral mass conservation equation, 
when applied to the control volume surrounding node i in Figure 2, can be written as follows: 

[ jl pV” - n2nr ds + pV” * n2nr ds 1 l 
+[similar contributions from other elements associated with node i ]  

+ [boundary contributions, if applicable] = 0. (44) 

In each element, the velocity V“ can be expressed in terms of its components in the z- and 
r-directions, u” and urn, respectively, as shown in equation (10). Interpolation functions for urn and 
v” have to be prescribed in order to approximate the mass-flux integrals in equation (44). First, 
the discretized momentum equations, equations (42) and (43), are written in the following way: 

- - 

ui=lii+d;( -2) cv , ui=ii+d;( -:) cv , 

where 

(45) 

For the evaluation of the mass fluxes on the faces a--o and o-c in element 123 (Figure 3), the 
velocity components are written as 

, v m = i + d v  -- (48) 
um=l i+du(  -:) element ( ~ ) e ~ e m e n t ~  

where a,$,  d” and d” are interpolated linearly from the corresponding values at the vertices of the 
element. This interpolation for urn and urn is borrowed from the work of Prakash and Patankar.” 
I t  prevents the occurrence of spurious pressure oscillations in the proposed CVFEM. Similar 
interpolation of the velocity components in the mass-flux terms have been successfully used by 
Rice and S~hnipke ,~’  Peric et al.j6 and Rhie and It should be noted, however, that this 
interpolation procedure may not be well suited for Newton-type linearizations of the convective 
terms in the momentum equations. 

In the derivation of algebraic approximations to integrals of mass fluxes in equation (44), u” 
and urn are interpolated in each element by the functions given in equations (48). The same 
functions are also used to approximate integrals that represent the mass flow rates in the 
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momentum equations. They are also used to compute uyv and urv in equation (22). Using these 
interpolation functions to approximate the integrals in equation (44), the contributions of element 
123 (Figure 3) to the mass conservation equation for the node 1 can be expressed as 

2n 
6 

jl pVm.n2xrds=- [ -~~ , [pu ," (2r ,+r , )+pu ,"(2r ,+r , ) ]+x , [pu ," (2r ,+r , )+pu ,"(2r ,+r , ) ]  1 ,  

(50) 

where u,", u,", u,", v,", u," and 0," are obtained using equation (48). Algebraic approximations to the 
mass flow rates in equation (23) are obtained analogously. 

Using expressions similar to equations (12) and (13) to evaluate the pressure gradients in 
equation (48), and adding similar contributions of the other elements surrounding the node i, the 
complete discretization equation for the pressure, p, is obtained. A compact representation of the 
discretized pressure equation for a typical node i is the following: 

3.5. Boundary conditions 

Domain boundaries that coincide with solid walls, symmetry surfaces, inlet regions and outlet 
regions are considered here. All these boundaries can be accounted for in a general formulation 
by noting that only two types of boundary conditions are encountered: specified value or given 
gradient. Free-surface problems are not within the scope of this paper. 

The following derivation pertains to the discretization equation for node 1 shown in 
Figure 3(c). The area between the points 1 and 2 is assumed to coincide with the boundary of the 
domain of interest. 

Specified value. When the dependent variable 4 is specified at the boundary node, and denoted 
as bSp, the discretization equation is written as follows: 

ac: = I ,  actb = 0, h: = q5sp. (52)  

Sprcifed gradient. When the gradient of the dependent variable normal to the boundary 
is given, say (d$/dn),,, the combined convection4iffusion flux of 4 normal to the boundary is 
given by 

where V, is the velocity component normal to the boundary. I t  is assumed that the elemental 
values of p and I?,, and the nodal value of (d4/Jn),,, are constant on surface I-a. Thus, the 
boundary contribution to the conservation 

s: Jl J .n2nrds=p 

where 

d = 2x1, -.rm. 

equation is given by 

(54) 

( 5 5 )  
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The convection contribution is evaluated using Simpson's rule, with the individual variations 
of V,, and 4 approximated with linear interpolations along the element edge 1-2. The boundary 
contribution can finally be written as 

This derivation has been done for the general &equation. The same treatment is also 
applicable to the momentum equations. 

For the continuity or integral mass conservation equation, only boundaries having mass flow 
crossing them have non-zero contributions. With respect to link I-a in Figure 3(c), this mass flow 
can be expressed as 

I t  should be noted here that the mass flow rates across the boundary edges such as I-a in 
Figure 3(c), are calculated using the latest available values of the nodal velocity V, not V". Only 
the mass flow rates across control-volume faces in the interior of the domain are calculated 
using V". 

Special treatments. Some special treatments are needed on boundaries with prescribed velocities, 
such as walls and inflow boundaries. At nodes which lie on such boundaries, d" and d" are set to 

( 5 8 )  
zero, and, therefore 

ci=u, o = v .  

A t  the outflow houndarirs, it is assumed that diffusion is negligible. This is handled by dropping 
the - r, (?&/?n) term in equation (53). 

As is well known," in incompressible flow problems, the level of the pressure inside the 
calculation domain is unimportant. Only differences in pressure at distinct points in the domain 
influence the fluid flow. In the proposed CVFEM, however, it is recommended that the value of 
pressure at one nodr be,fixed to  any conuenient value, for example, zero: this promotes the rate of 
convergence of the iterative solution algorithm, and it prevents the occurrence of excessively large 
levels of pressure during the solution process. In  problems with inflow and outflow, the pressure 
should be fixed at a node located on an outflow boundary. 

3.6. Solulion of' the cliscretization equalions 

An iterative sequential variable adjustment scheme proposed by SaabasZ9 is used to solve the 
non-linear, coupled sets of discretization equations for u, u and p ,  and other dependent variables 
of interest. 

1 .  
2. 

3. 
4. 
5. 
6. 

Start with a guessed velocity field. Also guess values of + that influence the flow field. 
Calculate the coefficients in the momentum equations (42) and (43), without the contribu- 
tions of the pressure gradient terms. 
Calculate 6,0, d" and d" using equations (46) and (47). 
Calculate the coefficients of the pressure equation (51). 
Solve the pressure equation. 
Complete the momentum equations by adding the pressure gradient terms, under-relax 
these equations, and solve for u and v .  
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7. For dependent variables, 4, that influence the flow field, calculate coefficients in the 

8. Return to Step 2 and repeat until convergence. 
9. Calculate and solve discretization equations for other 4 variables, if required. 

In this work, Steps 2-8 of this procedure were repeated until the non-dimensional average 
residue (absolute value) for each set of discretization equations was less than lo-''. Depending 
on the problem, global values, such as the average Nusselt number, were also monitored, and it 
was stipulated that the absolute value of the relative change from one iteration to the next should 
be less than in most of the calculations, however, it was found that the convergence 
criterion based on the non-dimensional average residue is more demanding. 

In each cycle of this algorithm, the linearized sets of discretized equations for p ,  u, u and 4 are 
solved sequentially. In this work, the discretized equations for u and v were under-relaxed, using 
the implicit under-relaxation procedure of Patankar,j' just before they were solved. The follow- 
ing under-relaxation parameters were used: a, = a,=05. The discretized equations for p should 
not be under-relaxed. If the nodes lie along line patterns, then each of these linearized sets of 
equations can be solved using an iterative line-by-line tridiagonal matrix algorithm:31 3 repeti- 
tions of 4 alternating direction line-by-line sweeps of the calculation domain were used with each 
set of linearized, decoupled equations for u, u and 4; 10 repetitions of such sweeps were used to 
solve the p-equations. No special efforts were made in this work to optimize these aspects of the 
overall solution procedure. For unstructured grids, block-by-block or point-by-point 
Gauss-Seidel methods may be used to solve each of these sets of discretized equations. 

To improve the rate of convergence of the aforementioned iterative solvers for the linearized 
discretization equations, block-correction and multigrid techniques, for example, can be included. 
In this work, however, these options were not considered. 

discretization equations, under-relax if required, and solve sequentially. 

4. APPLICATIONS 

The validity of the proposed axisymmetric CVFEM is demonstrated in this section by its 
application to four different test problems, and comparisons of the solutions with available 
numerical and experimental results. In general, the MAW scheme produces discretized equations 
that are more robust than those obtained with the FLO scheme, with respect to solution with the 
iterative sequential algorithm discussed in the previous section. However, the results obtained 
with FLO, when it converges, are more accurate than those obtained with MAW, for the same 
grid. Therefore, most of the results presented here were obtained using the FLO scheme. 
However, for one of the test problems, involving laminar natural convection in a cylindrical 
enclosure, results obtained with both FLO and MAW are presented in order to enable a com- 
parative evaluation of these schemes: detailed grid independence checks and CPU times are also 
presented for this test problem. It should also be noted that at high Reynolds numbers, good 
initial gkess values of the u, v and p fields were essential for convergence: in such cases, a solution 
obtained with the MAW scheme, which is more robust but not as accurate as the FLO scheme, 
was fed as the initial guess to the FLO scheme. 

4 . 1 .  Developing 1arninar.flow in a pipe 

Problem statement. Laminar flow of a constant-property Newtonian fluid in the inlet region of 
a circular pipe is investigated in this problem. The fluid enters the pipe of radius R with a uniform 
velocity profile: u=U, v=O. The ratio of the length to the radius of the pipe in this study was 
L / R  = 6. The results obtained vith the proposed CVFEM are compared to those of Friedmann 
et 
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Governing equations. The governing equations are the z- and r-momentum and continuity 
equations. For negligible body force, or for body-force terms that can be absorbed into an 
effective pressure, the momentum equations can be written in the general form (equation (4)) 
using the following definition of the source term: 

z-momentum 

dP s,= --, 
(72 

r-momentum 

(59) 

The boundary conditions are the prescribed uniform velocity profile at the inlet, the fully 
developed conditions at the outlet, and the no-slip condition on the wall. 

Results. The Reynolds number, Re=pti2R/p, considered in this problem is 40. A nor! uniform 
grid, with 1 1  1 nodes in the z-direction and 61 nodes in the r-direction, was used in this test. 
Preliminary test with 40 x 15 and 56 x 31 grids had established that the 1 1  1 x 61 grid produces 
essentially grid-independent results: the change in umin/U values produced by 56 x 31 and 1 11 x 61 
grids is less than 0.23%. In  the region O < z / R  I 1.25, the u velocity profile has a local minimum on 
the axis of the pipe and a maximum at a value of r>O. This behaviour has been observed 
e~perimentally.~' Table 11 presents the local minimum and maximum u velocities at several axial 
locations downstream of the entrance. Table 111 presents a comparison of the non-dimensional 
hydrodynamic entrance length, defined as the distance along the axis where the centreline velocity 
reaches 99% of its fully developed value. The results obtained with the proposed CVFEM are 
compared with the finite difference solution of Friedmann et aL3' The CVFEM results match the 
solution of Friedmann et ~ 1 . ~ '  very well: the maximum percentage difference in the results 
presented in Table I1 is 0.09%; the non-dimensional hydrodynamic entrance lengths presented 
differ by 0.80%. This simulation illustrates the capabilities of the proposed formulation to capture 
accurately the fluid flow phenomena encountered in the entrance regions of pipes. 

4.2. Laminar ,flow in a pipe with a sudden contraction 

Problem statement. The behaviour of laminar flow in a straight pipe with a sudden contraction 
in its diameter is investigated in this problem. This simulation was conducted with the geometry 
proposed by Durst and LoY.~' The inlet pipe has a diameter D of 19.1 mm, while the diameter d of 
the pipe after the contraction is 102 mm. The computational domain extends 25 mm upstream of 
the contraction and 20mm downstream. At the inlet of the pipe, the flow is considered as fully 
developed. The length of the pipe downstream of the contraction is long enough to ensure that the 
following outflow treatment is satisfactory: du/dz = O  and u =O. 

Gooerning equations. The governing equations are the same as the ones presented for the 
developing laminar pipe flow section. 

The boundary conditions are the prescribed fully developed velocity profile at  the inlet, outflow 
treatment at the outlet, and no-slip conditions on the pipe wall. 

Results. Simulations were conducted for two values of Reynolds number, ReD, based on the 
inlet diameter D, namely, 196 and 968. All simulations were done with a 72 x 97 non-uniform grid 
with a concentration of nodes in the recirculating zones, one upstream and one downstream of 
the contraction. The presented results consist of streamlines computed using the proposed 
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Table I I .  Developing laminar flow in a pipe: u,,, and umai values 

Proposed CVFEM Friedmann et 

Re zJR umi,/U u,,,JU U,i"IU u,,,JU 

40 0.25 1.048 1.219 1.048 1.219 
0.50 1.173 1.313 1.174 1.314 
0.75 1.325 1.404 1.326 1.405 
1 .oo 1.465 1.494 1.466 1.495 
1.25 1.579 1.583 1.580 1.583 

Table 111. Developing laminar flow in a pipe: non- 
dimensional hydrodynamic entrance length 

Re Proposed Friedmann et ~ 1 . ~ ~  
CVFEM 

40 4.92 4.88 

CVFEM, and comparisons of the computed axial and radial velocity 
positions with the experimental data obtained by Durst and LoY.~' 

profiles at several axial 

Numerical simulations on 37 x 51,72 x 97 and 143 x 193 grids established that the 72 x 97 grid 
produces essentially grid-independent results. The results of this grid independence study are well 
illustrated by the variation of the radial velocity profile at station z / D =  -0.052 for the three 
different grids (see Figure 5(b)): one can see that the radial velocity profile predicted by the 72 x 97 
and 143 x 193 grids are so close to each other that it is impossible to distinguish one from the 
other. All other results showed similar or better grid independence. Therefore, all other results 
presented in this section correspond to simulations done on the 72 x 97 grid. 

For Re,= 196, there is only one recirculating zone situated upstream of the contraction, as can 
be seen from the streamlines plotted in Figure 4(a). However, at ReD=968, an additional 
recirculating zone appears just downstream of the contraction (see Figure 4(b)). For Re,= 196, 
Figure 5(a) presents the evolution of the axial velocity profile along the pipe: z/D=O at the 
location of the contraction. The agreement with the experimental data of Durst and Loy is very 
good: both the shape of the profiles and the magnitude of the velocity are well predicted. It is 
interesting to note the velocity over-shooting phenomena, exhibited by both the numerical and 
experimental results, just downstream of the contraction. The computed radial velocity profiles, 
for ReD= 196, presented in Figure 5(b) do not agree as well with the experimental data: the 
difference in the magnitude is up to 50% at the station z / D =  -0.052. 

The axial velocity profiles for ReD=968 are shown in Figure 6(a). The proposed CVFEM 
predicts a recirculating zone downstream of the contraction. This is clearly confirmed by the 
shape of the axial velocity profiles downstream of the contraction: a zone of negative axial 
velocity exists near the wall. The computations done by Durst and Loy4O also indicate the 
presence of a recirculating zone downstream of the contraction. No such affirmation can be 
drawn from their experimental velocity profiles, however, since there are no experimental data 
close enough to the wall. The agreement between the CVFEM and the experimental results is 
again good, but not as good as in the case of ReD= 196. The magnitude of the radial velocity 
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( b )  
Figure 4. Streamline patterns for laminar flow in a pipe with a sudden contraction: (a) Re,= 196 (b) Ren=96X 

ReD = 196 
Experiment [40] 
Proposed CVFEM 

, . . . .  

37 X 51 
- 72 X 97 
- - 143 X 193 

_ _ _ _  

N In 
In z x 0 

Figure 5. Laminar flow in a pipe with a sudden contraction for Re.= 196: (a) axial velocity; (b) radial velocity 
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ReD = 968 
. . . . .  Experiment [40] 

Proposed CVFEM 

0.0 0.4 0.8 -v/u 

N In c ) w  
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c) 

8 
rr, z/D 
0 
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Figure 6. Laminar flow in a pipe with a sudden contraction for ReD=968: (a) axial velocity; (b) radial velocity 

profiles, presented in Figure 6(b), do  not agree very well with the experimental data, but the 
shapes of these profiles are close to the experimental ones. 

4.3.  Laminar natural convection in a cylindrical enclosure 

Problem statement. Axisymmetric buoyancy-driven laminar flow in a cylindrical cavity is 
presented in this section. This problem is schematically illustrated in Figure 7. A Newtonian fluid, 
with a temperature-dependent viscosity, is confined within the cylindrical region 0 I r I R ,  
0 < z I L. The lateral boundary, r = R ,  is insulated, and the horizontal surfaces z =0 and z = L are 
maintained, respectively, at constant temperatures TH and T,, where T H >  Tc. The acceleration 
due to gravity, g, is directed in the negative z-direction. The results obtained with the proposed 
CVFEM are compared with those obtained by Liang et aL4' using a Finite Difference Method 
(FDM). 

Governing equations. In this problem, the governing equations are the z- and r-momentum, 
continuity and energy equations. The Boussinesq approximation is used: thus, density is assumed 
to be a constant, p = p o ,  in all terms, except the buoyancy term in the z-momentum equation, in 
which p =po(l -Q(T- TH)). Here, p is the thermal volumetric expansion coefficient of the fluid. 
The specific heat, Cp, and the thermal conductivity, k ,  of the fluid are assumed to remain constant. 
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Schematic representation of laminar natural convection in a cylindrical Schematic representation of laminar natural convection in a cylindrical 

The source terms in the momentum equations can be written as follows: 

z-momentum 

r-momentum 

d p  aPau apsU s,= ---p7+--+-- 
dr JZ ar dr dr'  

The temperature distribution is governed by the energy equation 

enclosure 

where s( is the thermal diffusivity of the fluid (a = k/poCp). 

according to the following expression: 
In accordance with the assumptions of Liang et  a/.,4' viscosity is a function of temperature, 

where q is a parameter for this problem. The other non-dimensional parameters are R/L,  the 
Prandtl number, Pr,  and the Grashof number, Gr: 

Results. Two steady-state regimes, one with upflow and the other with downflow at the axis, 
were found experimentally and n ~ m e r i c a l l y . ~ ~  Numerically, a specific steady-state regime is 
simulated by using the proper initial temperature distribution. To get upflow at the axis, the 
lighter fluid (hot fluid) has to be near the axis initially. For the downflow solution, the heavier 
fluid (cold fluid) has to be near the axis. The numerical results presented in this section were 
computed for R / L  = 1, Pr = 2500, Gr = 2 and q = -0.2. Preliminary computations on uniform 
1 1 x 1 1,31 x 3 1 and 51 x 51 grid (see Figure 8) demonstrate that the 5 1 x 51 grid is fine enough to 
get grid-independent results when the FLO scheme is used. Figure 8 also presents the numerical 
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Figure 8. Temperature distribution along r / R  =0.5 in laminar natural convection in a cylindrical enclosure: grid- 
independence study for the case of upflow using FLO and MAW 

results obtained with the MAW scheme. As was expected, with the coarse grid ( 1  1 x 1 l), the 
MAW-scheme solution is not as accurate as that of the FLO scheme. For the grid which is 
considered to produce grid-independent results with the FLO scheme (51 x 51), the solution 
obtained with the MAW scheme is in pretty good agreement with the FLO-scheme solution. 
However, the solution of the MAW scheme on the 51 x 51 grid is not as grid-independent as that 
of the FLO scheme. In terms of convergence, this test problem is more challenging than the other 
three test problems presented in this paper. Accordingly, the number of iterations and the CPU 
times needed to achieve convergence are presented only for this test problem, both for the FLO 
and the MAW schemes (see Table IV). A Hewlett-Packard HP-720 Unix-based workstation was 
used to solve this problem, with a H P  FORTRAN 77 compiler running at optimization level 3. 
Convergence was considered to be achieved when both the absolute value of the relative change 
in the average Nusselt number and the non-dimensional average residue of all the equations were 
less than and lo-", respectively. The temperature distributions for the upflow and 
downflow regimes are presented in Figure 9(a) and 9(b). The solutions given by the proposed 
CVFEM are in good agreement with the numerical results obtained by Liang er a/.41 

Table V gives a comparison of the average Nusselt numbers, N u ,  computed by the proposed 
CVFEM and the FDM of Liang et aL4' The average Nusselt number is given by 

QL N U  = 
wRZk(TH- T C ) '  

where Q is the overall rate of heat transfer through the top or  bottom surface. The CVFEM 
Nusselt numbers are grid-independent extrapolated values obtained as follows: 

Nugi=  NU,+ K 6 "  (67) 

where Nugi is the grid-independent Nusselt number, N u ,  is the computed Nusselt number, and 
6 is the grid size (Ar =Az =const.). For a given set of parameters, the unknowns in this equation 
are Nugi, K and n. Therefore, three calculations, on three different grids, provide enough 
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Table IV. Laminar natural convection in a cylindrical 
enclosure: number of iterations and C P U  times 

Scheme Grid Iterations C P U  time (s) 

FLO I I  x 1 1  139 7.7 
FLO 31 x 3 1  912 534.3 
FLO 51 x51 2510 3960.2 
MAW 1 1  x 1 1  158 5.1 
MAW 31 x 3 1  1017 438.0 
MAW 51 x 5 1  2577 3195.1 

extrapolation equations to find the unknowns. In equation (67), it is assumed that terms of order 
6"" are negligible. To confirm that this indeed was the case, a fourth calculation, with a 61 x 61 
grid, was done. Two extrapolated values, computed using the first three and the last three 
computations, were obtained; they were invariant to four significant figures. 

The slight discrepancy between the Nusselt number predicted by the proposed CVFEM and 
FDM of Liang et can be partly explained by noting the use of a non-conservative 
formulation in the FDM.41 This non-conservative FDM yields different Nusselt numbers at the 
top and bottom surfaces, while the proposed conservative CVFEM gives the same Nusselt 
number. Since the lateral wall of the container is insulated, the top and bottom Nusselt numbers 
should be equal. A difference between the top and bottom Nusselt numbers implies a heat flux 
through the lateral wall, which is in contradiction with the prescription of the problem. 

4.4.  Laminar ,flow in a replica segment o f a  coronarji artery 

Problem statement. In this problem, laminar flow in a replica segment of a mildly athero- 
sclerotic human coronary artery is simulated. Mild atherosclerosis corresponds to a maximum 
obstruction in the artery of about 50% by cross-sectional area. In the investigation of Back et 

two replicas of a coronary artery were used. The first one was a hollow cast of a segment of 
the left circumflex coronary artery of a man with mild atherosclerosis. The second was an 
axisymmetric analogue of the original casting: the analogue casting had a straight axis, and the 
same cross-sectional area as the original casting at corresponding axial locations. A schematic 
representation of the analogue casting is presented in Figure 10. More recently, Back et did 
a steady-state flow test in the analogue replica. In this section, a numerical simulation, using the 
proposed CVFEM, of fluid flow in the analogue replica will be presented, along with a compari- 
son with the experimental results of Back et 

were done with a 33% sugar-water 
solution. The resulting fluid can be considered as Newtonian and, therefore, the governing 
equations are the same as the Navier-Stokes equations enumerated earlier in the context of 
developing laminar pipe flow. 

The boundary conditions are the prescribed Poiseuille velocity profile at the inlet, the outflow 
treatment at the outlet, and the no-slip condition on the wall. 

Results. Figure 10 illustrates the analogue geometry: It is important to note that the scale in 
the radial direction is ten times bigger than the axial scale. This geometry is clearly irregular, and 
it has been chosen to illustrate the capability of the proposed CVFEM to simulate flow in 
a complex geometry. A grid independence analysis was done for a Reynolds number, based on 
average velocity and diameter at the inlet, of 353. Pressure coefficients (= [ p - p z = o ] / [ 0 . 5 p u ~ v ] )  

Governing equations. The experiments of Back et 
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Figure 9. Temperature distribution in laminar natural convection in a cylindrical enclosure: (a) upflow; (b) downflow 

Table V. Laminar natural convection in a cylindrical enclosure: 
average Nusselt number results 

Case Proposed CVFEM Liang et d4' 

upflow 
Downflow 

1.768 
1.765 

1.767 
1.76 1 
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Figure 12. Laminar Row in a replica segment of a coronary artery: pressure-change coefficient for different Reynolds 
numbers 

CVFEM and the experimental data of Back et 
the numerical results with the experimental data is good. 

for Re= 59,83,207 and 353. The agreement of 

5. CONCLUSION 

In this paper, the formulation and the capabilities of a co-located, equal-order CVFEM for 
steady, axisymmetric, incompressible fluid flow and heat transfer problems have been presented. 
lndependent numerical and experimental investigations available in the literature have been used 
to check the results of the proposed CVFEM. These comparisons indicate that the proposed 
CVFEM can successfully solve elliptic, axisymmetric, incompressible fluid flow and heat transfer 
problems in regular and irregular geometries. The test problems presented in this paper involved 
only laminar flow in singly connected domains discretized using structured grids. This is 
a limitation of the implementation. The proposed method has no such limitation in principle. 
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